

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

BITSAT 2012

Previous Year Questions

English

Single	correct answer type			
1.	Out of the four alternativ	ves, choose the one whic	ch expresses the right m	eaning of the given word.
	Dubious			
	(A) Doubtful	(B) Disputable	(C) Duplicate	(D) Dangerous
Ans.	(A)			
2.	Out of the four alternativ	ves, choose the one whic	ch expresses the right m	eaning of the given word.
	Flabbergasted			· · · · · · ·
_	(A) Scared	(B)Embarrassed	(C) Dumbfounded	(D) Humiliated
Ans.	(C)			
•				
3.	Out of the four alternativ	ves, choose the one whic	ch expresses the right m	eaning of the given word.
	(A) Innumerable	(B) Unmeasurable	(C) Prolonged	(D) Perpetual
Ans.	(D)			
) ^v
4.	Choose the word oppos	site in meaning to the give	en word. Despair	
	(A) Belief	(B) Trust	(C) Hope	(D) Faith
Ans.	(C)		60	
5.	Choose the word oppos	site in meaning to the give	en word. In toto	
	(A) Bluntly	(B) Partially	(C) Entirely	(D) Strongly
Ans.	(B)			
6.	Choose the word oppos	site in meaning to the give	en word. Protean	
	(A) Amateur	(B) Catholic	(C) Unchanging	(D) Rapid
Ans.	(C)			
7.	A part of the sentence	e is underlined. Below	are given alternatives t	o the improve the sentence.
	Choose the correct alte	rnative. In case no impro	vement is needed, your	answer is 'd'
	He declined all the alleg	gations against him.		
	(A) spurned	(B) refused	(C) refuted	(D) no improvement
Ans.	(D)			

8.	A part of the sentence	e is underlined. Below are	e given alternatives to the	e improve the sentence. Choose
	the correct alternative	. In case no improvemer	nt is needed, your answe	r is 'd'.
	It is time we <u> leave</u>	e.		
	(A) left	(B) have to leave	(C) would leave	(D) no improvement
Ans.	(A)			
9.	A part of the sentence	e is underlined. Below ar	e given alternatives to the	e improve the sentence.
	Choose the correct al	ternative. In case no imp	rovement is needed, you	r answer is 'd'.
	We spent an hour dis	cussing about his charac	ter.	
	(A) on his character	(B) of his character	(C) his character	(D) no improvement
Ans.	(C)			
10.	Sentences are giver	n with blanks to be fi	lled in with an approp	riate and suitable word. Four
	alternatives are sugge	ested for each question.	Choose the correct alte	rnative out of the four. Are your
	really desirous	visiting Japan?		
	(A) of	(B) in	(C) to	(D) about
Ans.	(A)			~ ·
				Q'
11.	Sentences are giver	n with blanks to be fi	lled in with an approp	riate and suitable word. Four
	Indians from the Sout	ested for each question	a. Choose the correct all	ternative out of the four. when
		(P) concrete	(C) different	(D) divorgant
Anc	(A) strange	(b) separate		(D) divergent
AIIS.	(A)		4	
40	Septences are given	with blanks to be filled in	with an appropriate and	auitable word. Four alternatives
12.	are suggested for each	h question. Choose the	correct alternative out of t	the four. The sky is overcast, we
		n will soon burst.		
	(A) expect	(B) hope	(C) trust	(D) suspect
Ans.	(D)			() 1
	(-)			
13.	The first and the last	parts of the sentence an	e numbered 1 to 6. The i	rest of the sentence is spelt into
	four parts and named	P, Q, R and S. These for	ur parts are not given in th	neir proper order. Read the parts
	and find out which of	the four combinations is	correct. Then find the co	rect answer.
	1. Early to bed, early	to rise, makes a man hea	althy, wealthy and wise.	
	P. But for the morning	l tea, I had to wait for so	meone to get up before n	ne.
	_			

- Q. This saying inspired me to rise early.
- R. That day I was the first to get up.

MENIIT

	S. One day I got up	early in the morning.		
	6. Then I realized th	at it was a waste of time to	get up early and wait for	r the morning tea.
	(A) QSRP	(B) QPRS	(C) PQRS	(D) SPQR
Ans.	(A)			
14.	1. A wood-cutter wa	s cutting a tree on a river b	oank.	
	P. He knelt down ar	d prayed.		
	Q. His axe slipped a	nd fell into the water.		
	R. God Mercury app	eared before him and ask	ed about the matter.	
	S. He could not get	t back as the river was ver	y deep.	
	6. He dived into the	water and came up with a	n axe of good.	
	(A) RPQS	(B) RPSQ	(C) QSRP	(D) QSPR
Ans.	(D)			
15.	1. A dog stole a piec	e of meat from a butcher's	s shop.	
	P. He barked in ang	er.		
	Q. He ran to the jun	gle with the piece of meat.		A.
	R. He saw his reflec	tion.		
	S. He crossed a rive	r on the way.		
	6. He lost his piece	of meat.		
	(A) QPSR	(B) QSRP	(C) QPRS	(D) SRPQ
Ans.	(B)			
16.	In a certain code M	ONKEY is XDJMNL. How is	s 'TIGER' written as?	
	(A) QDFHS	(B) SDFHS	(C) SHFDQ	(D) UJHFS
Ans.	(A)			
	MONKEY			
Sol.				
	Cimilarly			

17. Find the missing number from the given responses. 12 19 13 18 228 221 (A) 31 (B) 229 (C) 234 (D) 312 (C) Ans. Sol. Similarly, 13 × 17 = 221 $12 \times 19 = 228$ Similarly, 13 × 18 = 234 18. If the day before yesterday was Thursday, when will Sunday be? (A) tomorrow (B) day after tomorrow (C) today (D) two days after today Ans. (A) Sol. If the day before yesterday was Thursday. Then, today will be Saturday and the Sunday will be tomorrow. In a row of children Ravi is fourth from right and Shyam is second from left. When they interchange 19. positions Ravi is ninth from right. What will be Shyam position from left? (A) Fifth (C) Seventh (B) Sixth (D) Eighth Ans. (C) When Ravi and Shyam interchange their position than Ravi's new position (ninth from right) is the same Sol. as Shyam's initial position (second from left) ... Total number of students in the row = 8 + 1 + 1 = 10 So, Shyam's new position is same as Ravi's initial position (fourth from right) third from left. So, Shyam's new position from left 20. (B) (C) Ans. (D) Sol. Answer figure (d) will appear when a piece of paper folded and cut as shown in the question figure.

(A) X += (B) = X + (C) +X = (D) = +X

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

Ans. (B)

Sol. Given equation, 24 Δ 4 Δ 5 Δ 4 From option (= +X), $24 = 4 + 5 \times 4$ 24 = 4 + 2024 = 24

24. Which answer figure is the exact mirror image of the given figure when the mirror is held from the right at PQ?

(C) Ans.

FOUNE Sol. Answer figure (C) is correct mirror image of question figure.

JEE

MATHEMATICS

Single correct answer type

1. The equation of the base BC of an equilateral $\triangle ABC$ is x + y = 2 and A is (2, -1). The length of the side of the triangle is

(A)
$$\sqrt{2}$$
 (B) $\left(\frac{3}{2}\right)^{\frac{1}{2}}$ (C) $\left(\frac{1}{2}\right)^{\frac{1}{2}}$ (D) $\left(\frac{2}{3}\right)^{\frac{1}{2}}$

Ans. (D)

Sol. Length of perpendicular from A(2, -1) to the line x + y - 2 = 0 is

2. The equation of the circle circumscribing the triangle formed by the lines x + y = 6, 2x + y = 4 and x + 2y = 5 is

(A) $x^{2} + y^{2} + 17x + 19y - 50 = 0$ (C) $x^{2} + y^{2} + 17x - 19y - 50 = 0$ (B) $x^2 + y^2 - 17x - 19y - 50 = 0$ (D) $x^2 + y^2 - 17x - 19y + 50 = 0$

Ans. (D)

- Sol. Lines, x + y = 6, 2x + y = 4 and x + 2y = 5Intersect at points (-2, 8), (7, -1) and (1, 2). Now, all these points lie on $x^{2} + y^{2} - 17x - 19y + 50 = 0$
- 3.The length of the tangent from (5, 1) to the circle is $x^2 + y^2 + 6x 4y 3 = 0$ is
(A) 7(B) 49(C) 63(D) 21

Ans. (A)

Sol. Required length of tangent is $\sqrt{S_1}$, where

$$S_1 = 25 + 1 + 30 - 4 - 3 = 49$$

 $\therefore \sqrt{S_1} = 7$

If the length of the major axis of the ellipse $\left(\frac{x^2}{a^2}\right) + \left(\frac{y^2}{b^2}\right) = 1$ is three times the length of minor axis, its 4.

eccentricity is

(C) $\sqrt{\frac{2}{3}}$ (D) $\frac{2\sqrt{2}}{3}$ (B) $\frac{1}{\sqrt{3}}$ (A) $\frac{1}{3}$

Ans. (D)

Sol. Length of minor axis = 2b and according to the given condition length of major axis = 3(2b) = 6b

$$\therefore e = \sqrt{1 - \frac{b^2}{(3b)^2}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}$$

S and T are the foci of the ellipse $\left(\frac{x^2}{a^2}\right) + \left(\frac{y^2}{b^2}\right) = 1$ and B is an end of the minor axis. If STB is equilateral 5.

triangle, then eccentricity of the ellipse is

(A)
$$\frac{1}{4}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\sqrt{\frac{3}{2}}$ (C)

Ans. (C)

Sol. In Δ BOT,

$$\frac{b}{ae} = \tan 60^{\circ} \Rightarrow b = ae\sqrt{3}$$

$$\therefore e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{a^2e^23}{a^2}}$$

$$\Rightarrow e^2 = 1 - 3e^2 \Rightarrow 4e^2 = 1 \Rightarrow e = \pm \frac{1}{2}$$

$$\Rightarrow e = \frac{1}{2}$$

(∴ e cannot be negative)

6.

- The difference of the focal distance of any point on the hyperbola is equal to its
 - (A) latusrectum
 - (B) eccentricity
 - (C) length of the transverse axis
 - (D) half the length of the transverse axis
- Ans. (C)
- Sol. The difference of the focal distance at any point on the hyperbola is same as length of the transverse axis. i.e., 2a

7. If
$$A + B + C = 180^\circ$$
, then $\frac{\cot A + \cot B + \cot C}{\cot A \cot B \cot C}$ is equal to
(A) 1 (B) $\cot A \cot B \cot C$ (C) -1 (D) 0
Ans. (A)
Sol. Since, $A + B + C = 180^\circ$
 $\Rightarrow \cot (A + B + C)$
 $= \frac{\sum \cot A \cot B - 1}{\cot A \cot B \cot C - \sum \cot A} = \frac{1}{0}$
 $\Rightarrow \cot A \cot B \cot C - \sum \cot A = 0$
 $\Rightarrow \frac{\cot A \cot B + \cot C}{\cot A \cot B \cot C} = 1$
8. The angles of a triangle are in AP and the least angle is 30°. The greatest angle in radians is
(A) $\frac{7\pi}{12}$ (B) $\frac{2\pi}{3}$ (C) $\frac{5\pi}{6}$ (D) $\frac{\pi}{2}$
Ans. (D)
Sol. Now, $30^\circ = 30^\circ \times \frac{\pi}{180}$ rad $= \frac{\pi}{6}$
Let angle be a, $a + d$, $a + 2d$ area in AP
Now, $3a + 3d = \pi$ ($\therefore A + B + C = \pi$)
 $\Rightarrow 3 \times \frac{1}{3} (\pi - \frac{\pi}{2}) = \frac{\pi}{6}$
 \therefore Greatest angle $= a + zd$
 $= \frac{\pi}{2} + 2, \frac{\pi}{6} = \frac{\pi}{2}$

$$\Rightarrow 3 \times \frac{1}{3} \left(\pi - \frac{\pi}{2} \right) = \frac{\pi}{6}$$

∴ Greatest angle = a + zd

$$=\frac{\pi}{2}+2, \frac{\pi}{6}=\frac{\pi}{2}$$

tan160°-tan110° 1+tan160°tan110° is equal to 9. If tan 20° = p, then

(A)
$$\left(\frac{1-p^2}{2p}\right)$$
 (B) $\left(\frac{2p}{1+p^2}\right)$ (C) $\left(\frac{1+p}{2p}\right)$ (D) $\left(\frac{1-p}{2p}\right)$

(A) Ans.

Sol. Given that, tan20° = p

$$\therefore \frac{\tan 160^\circ - \tan 110^\circ}{1 + \tan 160^\circ \tan 110^\circ}$$

$$= \frac{\tan(180^\circ - 20^\circ) - \tan(90^\circ + 20^\circ)}{1 + \tan(180^\circ - 20^\circ)\tan(90^\circ + 20^\circ)}$$

$$= \frac{-\tan 20^{\circ} + \cot 20^{\circ}}{1 + \tan 20^{\circ} \cot 20^{\circ}}$$
$$= \frac{-p + \frac{1}{p}}{1 + 1} = \frac{1 - p^{2}}{2p}$$

10. If $4 \sin^{-1} x + \cos^{-1} x = \pi$, then x is equal to

(A)
$$\frac{1}{2}$$
 (B) 2 (C) 1 (D) $\frac{1}{3}$
Ans. (A)
Sol. Given, $4 \sin^{-1} x + \cos^{-1} x = \pi$
 $\Rightarrow \frac{4 \sin^{-1} x + \pi}{2} - \sin^{-1} x = \pi$
 $\Rightarrow 3 \sin^{-1} x = \frac{\pi}{2}$
 $\Rightarrow x = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$
11. In a $\triangle ABC$, $a = 2, b = 3$ and $\sin A = \frac{2}{3}$. Then, $\cos C$ is equal to
(A) $\frac{1}{2}$ (B) $\frac{2}{3}$ (C) $\frac{2}{\sqrt{13}}$ (D) $\frac{1}{\sqrt{13}}$
Ans. (B)
Sol. $a = 2, b = 3, \sin A = \frac{2}{3} \Rightarrow \sin^2 A = \frac{4}{9}$
 $\therefore \cos^2 A = 1 - \sin^2 A = \frac{5}{9}$
 $\Rightarrow \cos A = \frac{\sqrt{5}}{3}$
By sine rule, $\frac{\sin A}{a} = \frac{\sin B}{b}$
 $\Rightarrow \frac{2}{a} \times \frac{1}{2} = \frac{\sin B}{a}$
In $\triangle ABC$, $\cos C = \frac{a}{b} = \frac{2}{a}$

12. The vector equation $\vec{r} = \hat{i} - 2\hat{j} - \hat{k} + t(6\hat{i} - \hat{k})$ represents a straight line passing through the points

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

	(A) (0, 6, −1) and (1, −2	2, –1)	(B) (0, 6, −1) and (−1, -	-4, -2)
	(C) (1, −2, −1) and (1, -	4, –2)	(D) (1, −2, −1) and (0, -	-6, 1)
Ans.	(C)			
Sol.	Equation of the line pa	ssing through a and b is	a + t(b – a)	
	Here, b – a = 6ĵ – k			
	\Rightarrow b = 6 \hat{j} - k + I - 2j -	- k		
	= I + 1j – 2k			
	\therefore Given line passes th	nrough (1, −2, −1) and (1,	4, -2)	
13.	The work done by the $(3, 2, -1)$ to $(2, -1, 4)$ is	e force 4i – 3j + 2k in s	moving a particle along	a straight line from the point
	(A) 0 units	(B) 4 units	(C) 15 units	(C) 19 units
Ans.	(C)			
Sol.	Work done = (Force di	splacement)		
	= (4i – 34j + 2k) – {(2i -	-j + 4k) - (3i + 2j - k)		
	= (4i - 3j + 2k) - (-i - 3)	3j + 5k)		
	= (–4 + 9 + 10) = 15 ur	nits		0'
14.	$\lim_{x\to 0} \left(\frac{(2+x)\sin(2+x)}{x}\right)$	$()-2\sin 2$ is equal to	JUL	
	(A) sin 2	(B) cos 2	(C) 1	(D) 2 cos 2 + sin 2
Ans.	(D)			
Sol.	$\lim_{x\to 0}\frac{(2+x)\sin(2+x)}{x}$	$\frac{-2\sin 2}{0} \left(\frac{0}{0} \text{ form}\right)$		
	$=\lim_{x\to 0}\frac{\sin(2+x)+(2x)}{2x}$	$(x+x)\cos(2+x)$		
	= sin 2 + 2 cos 2			
15.	If $f(x) = \frac{3x + \tan^2 x}{x}$ is a	continuous at x = 0, then	f(0) is equal to	
	(A) 3	(B) 2	(C) 4	(D) 0
Ans.	(A)			
Sol.	Now, $\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{2}{x}$	$\frac{3x + \tan^2 x}{x} \left(\frac{0}{0} \text{ form}\right)$		
	$=\lim_{x\to 0}\frac{3+2\tan x \sec^2 x}{1}$	= 3		

	Since, f(x) is continuou	is at x = 0		
	∴ f(0) = 3			
16.	If x is measured in dec	pree, then $\frac{d}{dx}$ (cos x) is	equal to	
	(A) – sin x	$(B) - \frac{180}{\pi} \sin x$	(C) $-\frac{\pi}{180}$ sin x	(D) sin x
Ans.	(C)			
Sol.	$\frac{d}{dx} (\cos x) = -\frac{\pi}{180} \sin x$	η π		
17.	$\left(\frac{d}{dx}\right)$ [log(sec x – tan	x)] is equal to		
	(A) – sec x	(B) sec x + tan x	(C) sec x	(D) sec x – tan x
Ans.	(A)			
Sol.	$\frac{d}{dx}$ [log(sec x – tan x)]			110
	$= \frac{1}{\sec x - \tan x} [\sec x]$	tan x – sec²x]		pr
	$= \frac{\sec x[\tan x - \sec x]}{\sec x - \tan x}$	= - sec x		
18.	If $x = \cos^2 \theta$ and $y = \sin^2 \theta$	$^{3}\theta$, then 1 + $\left(\frac{dy}{dx}\right)^{2}$ is e	equal to	
	(A) tan ² θ	(B) $\cot^2 \theta$	(C) $\sec^2 \theta$	(D) $cosec^2\theta$
Ans.	(C)			
Sol.	Given, $x = \cos^3 \theta$, $y = s$	in ³ 0		
	On differentiating w. r.	t. θ respectively, we get		
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -3\mathrm{cos}^2\theta\sin\theta$			
	Ans $\frac{dy}{d\theta} = 3\sin 2\theta \cos \theta$			
	Now, $\frac{dy}{dx} = -\frac{3\sin^2\theta cc}{3\cos^2\theta s}$	$\frac{ds\theta}{dtheta \theta} = -\tan\theta$		
	$\therefore 1 + \left(\frac{dy}{dx}\right)^2 = 1 + tar$	$\theta^2 \theta = \sec^2 \theta$		
19.	If x = at ² , y = 2at, then	$\frac{d^2y}{dx^2}$ is equal to		

(A)
$$-\frac{1}{t^2}$$
 (B) $-\frac{1}{2at^3}$ (C) $\frac{1}{t^2}$ (D) $-\frac{a}{2t^3}$

Ans. (B)

Sol. $x = at^2$, y = 2atOn differentiating w. r. t. t, respectively $\Rightarrow \frac{dx}{dt} = 2at, \frac{dy}{dt} = 2a$ $\therefore \frac{dy}{dx} = \frac{2a}{2at} = \frac{1}{t}$

$$= -\frac{1}{t^2} \cdot \frac{1}{2at}$$
$$= -\frac{1}{t^2} \cdot \frac{1}{2at}$$

2at³

20. If the rate of change in the circumference of a circle of 0.3 cm/s, then the rate of change in the area of the circle when the radius is 5 cm, is

(A) 1.5 sq cm/s (B) 0.5 sq cm/s (C) 5 sq cm/s (D) 3 sq cm/s
Ans. (A)
Sol. Circumference of circle,
$$C = 2\pi r$$

 $\Rightarrow \frac{dC}{dt} = 2\pi \frac{dr}{dt}$
 $\Rightarrow \frac{0.3}{2\pi} = \frac{dr}{dt}$ ($\because \frac{dc}{dt} = 0.3 \text{ cm} / \text{ s given}$)
Now $A = \pi r^2$
 $\Rightarrow \frac{dA}{dt} = r \times 0.3$
 $\Rightarrow \left[\frac{dA}{dt}\right]_{r=5} = 5 \times 0.3 = 1.5 \text{ sq cm/s}$

21. If $y = x^3 - ax^2 + 48x + 7$ is an increasing function for all real values of x, then a lies in

Sol. $\frac{dy}{dx} = 3x^2 - 2ax + 48 > 0$

(:: y is an increasing function)

∴ Discriminant, D < 0

$$\Rightarrow 4a^2 - 4 \times 3 \times 48 < 0$$

 $\Rightarrow a^2 - 144 < 0$ ⇒ aε (−12, 12) 22. Rolle's theorem is not applicable for the function f(x) = |x| in the interval, [-1, 1] because (A) f' (1) does not exist (B) f'(-1) does not exist (C) f(x) is discontinuous at = 0 (D) f'(0) does not exist Ans. (D) Sol. Rolle's theorem is not applicable for the function f(x) = |x| inn [-1, 1] :: f(0) does not exit. $\int \frac{2dx}{(e^x + e^{-x})^2}$ is equal to 23. $(A) - \frac{e^{-x}}{(e^{x} + e^{-x})} + C$ (B) $\frac{1}{(e^{x} + e^{-x})} + C$ (C) $\frac{1}{(e^{x} + 1)^{2}} + C$ (D) _____ FOUNDA Ans. (A) Let = $\int \frac{2dx}{(e^x + e^{-x})^2}$ Sol. $=\int \frac{2dx}{e^{2x} + e^{-2x} + 2}$ $=\int \frac{2e^{2x}dx}{e^{4x}+2e^{2x}+1}$ $\therefore I = \int \frac{dt}{t^2 + 2t + 1} = \int \frac{dt}{(t - 1)^2} = -\frac{1}{t + 1} + C$ $= -\frac{1}{t + 1} = \int \frac{dt}{(t - 1)^2} = -\frac{1}{t + 1} + C$ $= -\frac{1}{e^{2x} + 1} = \frac{e^{-x}}{e^{x} + e^{-x}} + C$ $\int_{0}^{\frac{\pi}{2}} \frac{\sin^{n} \theta}{\sin^{n} \theta + \cos^{n} \theta} d\theta \text{ is equal to}$ 24. (C) $\frac{\pi}{2}$ (A) 1 (D) $\frac{\pi}{4}$ (B) 0 Ans. (D) **Sol.** Let = $\int_{0}^{\frac{\pi}{2}} \frac{\sin^{n} \theta}{\sin^{n} \theta + \cos^{n} \theta} d\theta$... (i) $= \int_0^{\frac{\pi}{2}} \frac{\sin^n(\pi/2-\theta)}{\sin^n(\pi/2-\theta) + \cos^n(\pi/2-\theta)} d\theta$

$$= \int_{0}^{\frac{\pi}{2}} \frac{\cos^{n} \theta}{\cos^{n} \theta + \sin^{n} \theta} d\theta \qquad \dots (ii)$$
On adding eqs. (i) and (ii) we get]
$$2I = \int_{0}^{\frac{\pi}{2}} \sin^{n} \theta + \cos^{n} \theta d\theta \\
= \int_{0}^{\frac{\pi}{2}} d\theta = \frac{\pi}{2} \Rightarrow i = \frac{\pi}{4}$$
25. $\int_{0}^{\pi} \cos^{(0)} x dx$ is equal to
(A) $\frac{\pi}{4}$ (B) $\frac{1}{102}$ (C) $\left(\frac{\pi}{3}\right)^{(0)}$ (D) 0
Ans. (D)
Sol. Let $I = \int_{0}^{\pi} \cos^{(0)} x dx
 $\Rightarrow I = \int_{0}^{\pi} (\cos(\pi - x))^{(0)} dx
 $\Rightarrow I = \int_{0}^{\pi} -\cos^{(0)} x dx
 $\Rightarrow I = \int_{0}^{\pi} (\cos^{(0)} x dx
 $\Rightarrow I = 0$
26. $\lim_{n \to \infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{6n}\right]$
(A) log 2 (B) log $(1 + \sqrt{5})$ (C) log 6 (D) 0
Ans. (C)
Sol. $\lim_{n \to \infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{6n}\right]$
 $\lim_{n \to \infty} \sum_{i=0}^{\infty} \frac{1}{n+i} = \lim_{n \to \infty} \left[\frac{1}{n} \sum_{i=0}^{\infty} \frac{n}{n+i}\right]$
 $\lim_{n \to \infty} \left[\frac{1}{n+i} + \frac{1}{n+i} + \dots + \frac{1}{6n}\right]$
 $\lim_{n \to \infty} \left[\frac{1}{n+i} \sum_{i=0}^{\infty} \frac{1}{n+i} + \frac{1}{(1/n)}\right]$
 $= \int_{0}^{\pi} \frac{1}{1+x} dx = [\log(1+x)]_{0}^{\pi}$$$$$

27. By eliminating the arbitrary constant A and B from $y = Ax^2 + Bx$, we get the differential equation

(A)
$$\frac{d^3y}{dx^3} = 0$$
 (B) $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

(C)
$$\frac{d^2y}{dx^2} = 0$$

Ans. (B)

Given, $y = Ax^2 + Bx$ Sol.(i) On differentiating, we get

$$\frac{dy}{dx} = 2 Ax + B$$

$$\Rightarrow \frac{d^2 y}{dx^2} = 2A$$

$$dy \quad d^2 y$$

$$\therefore \ \frac{dy}{dx} - \frac{dy}{dx^2} \ x = B$$

From eq. (i), we get

$$y = \frac{1}{2} \frac{d^2 y}{dx^2} x^2 + x \left[\frac{dy}{dx} - \frac{d^2 y}{dx} - \frac{d^2 y}{dx^2} x \right]$$
$$\Rightarrow y = -\frac{1}{2} x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx}$$
$$\therefore x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$$

28. If
$$f(x) = \frac{\log(1+ax) - \log(1-bx)}{x}$$
 for $x \neq 0$ and $f(0) = k$ and $f(x)$ is continuous at $x = 0$, then k is equal to
(A) $a + b$ (B) $a - b$ (C) a (D) b
Ans. (A)

(D) $x^2 \frac{d^2 y}{dx^2} + y = 0$

MDATK

Sol. Given,
$$f(x) = \frac{\log(1+ax) - \log(1-bx)}{\log(1-bx)}$$

f(x) is continuous at x = k and f(0) = k

$$\therefore \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\log(1 + ax) - \log(1 - bx)}{x} \left(\frac{0}{0} \text{ form}\right)$$
$$= \lim_{x \to 0} \left(\frac{1}{1 + ax}a + \frac{b}{1 - bx}\right)$$
$$= a + b$$
$$\therefore a + b = f(0) = k$$

If 4 - 5i is a root of the quadratic equation, $x^2 + ax + b = 0$, then (a, b) is equal to 29. (B) (–8, 41) (C) (41, 8) (D) (–41, 8) (A) (8, 41) (B) Ans.

 $\frac{4}{7}$

Sol. If 4 - 5i is root of $x^2 + ax + b = 0$, then 4 + 5i is also the root.

 $\therefore \text{ Sum of roots} = -a - 8$ $\Rightarrow a = -8$ And product of roots = 16 + 25 = b = 41 $\therefore (a, b) = (-8, 41)$

30. If α and β are the roots of the quadratic equation $4x^2 + 3x + 7 = 7$, then the value of $\frac{1}{\alpha} + \frac{1}{\beta}$ is

(A)
$$-\frac{3}{4}$$
 (B) $-\frac{3}{7}$ (C) $\frac{3}{7}$ (D)

Ans. (B)

Sol. Given equation can be rewritten as

$$x^{2} + \frac{3}{4}x + \frac{7}{4} = 0$$

$$\Rightarrow \alpha + \beta = -\frac{3}{4}, ab = \frac{7}{4}$$

Now, $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = -\frac{3}{7}$

31. If α , β are the roots of $ax^2 + bx + c = 0$ and $\alpha + k$, $\beta + k$ are the roots of $px^2 + qx + r = 0$, then $\frac{b^2 - 4ac}{q^2 - 4pr}$

is equal to

(A)
$$\frac{a}{p}$$
 (B) 1 (C) $\left(\frac{a}{p}\right)^2$ (D) 0

Ans. (C)

Sol. Since, α , β are the roots of the equation

ax² + bx + c = 0
Then,
$$\alpha = -\frac{b}{2a} + \sqrt{b^2 - 4ac}$$

and $\beta = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}$
......(i)

And α + k, β + k are the roots of the equation px² + qx + r = 0

Then,
$$\alpha + k - \frac{q}{2p} + \frac{\sqrt{q^2 - 4r}}{2p}$$

 $\Rightarrow k = -\frac{q}{2p} + \frac{\sqrt{q^2 - 4r}}{2p} + \frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}$

$$\Rightarrow \frac{\sqrt{q^2 - 4pr}}{2p} - \frac{\sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-\sqrt{q^2 - 4pr}}{2p} + \frac{\sqrt{b^2 - 4ac}}{2a}$$
$$\Rightarrow \frac{\sqrt{q^2 - 4pr}}{p} = \frac{\sqrt{b^2 - 4ac}}{a}$$
$$\Rightarrow \frac{q^2 - 4pr}{p^2} = \frac{b^2 - 4ac}{a^2}$$
$$\therefore \frac{b^2 - 4ac}{q^2 - 4qr} = \left(\frac{a}{p}\right)^2$$

- **32.** Area of the triangle in the argand diagram formed by the complex number z, is z + iz, where z = x + iy is
 - (A) |z| (B) $|z|^2$ (C) $2|z|^2$ (D) $\frac{1}{2}|z|^2$

Ans. (D)

Sol. Since, iz = $ze^{i\pi/2}$

This implies that iz is the vector obtained by rotating vector z in anti-clockwise direction through 90°.

$$\therefore$$
 OA \perp AB

So, area of
$$\triangle OAB = \frac{1}{2}OA \times OB$$

$$=\frac{1}{2}|z||iz|=\frac{1}{2}|z|^{2}$$

33. The sum of n terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ is

(A) $n - 1 + 2^{-n}$ (B) 1 (C) n - 1 (D) $1 + 2^{-n}$

Sol. Let S_n be the sum of first n terms of the series.

$$\therefore S_{n} = \frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$$
$$\Rightarrow S_{n} = \left(1 - \frac{1}{2}\right) + \left(1 - \frac{1}{4}\right) + \left(1 - \frac{1}{8}\right) + \dots$$
$$S_{n} = n - \frac{1}{2} \frac{(1 - 1/2)}{2(1 - 1/2)} = n - 1 + \frac{1}{2^{n}}$$
$$\Rightarrow = n - 1 + 2^{-n}$$

34. 0.2 + 0.22 + 0.222 + ... to n terms is equal to (A) $\left(\frac{2}{9}\right) - \left(\frac{2}{81}\right) (1 - 10^{-n})$ (B) n - $\left(\frac{1}{9}\right)$ (1 - 10⁻ⁿ) $(C)\left(\frac{2}{9}\right)\left[n-\left(\frac{1}{9}\right)(1-10^{-n})\right]$ (D) $\left(\frac{2}{9}\right)$ Ans. (C) 0.2 + 0.22 + 0.222 + n terms Sol. = 2(0.1 + 0.11 + 0.111 + ... n terms) $= 2\left(\frac{1}{10} + \frac{1}{100} + \frac{111}{100} + \dots \text{ terms}\right)$ $= \frac{2}{9} \left(\frac{9}{10} + \frac{99}{100} + \frac{999}{1000} + \dots \text{ terms} \right)$ FOUNDATIC $=\frac{2}{9}\left(1-\frac{1}{10}+1-\frac{1}{100}+1-\frac{1}{1000}+...nterms\right)$ $= \frac{2}{9} \left[n - \left(\frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \dots n \right) \right]$ $= \frac{2}{9} \left| n - \frac{1}{10} \frac{\left\{ 1 - \left(\frac{1}{10} \right)^n \right\}}{\left(1 - \frac{1}{10} \right)} \right|$ $= \frac{2}{9} \left[n - \frac{1}{10} \times \frac{10}{9} \cdot \left(\frac{10^{n} - 1}{10^{n}} \right) \right]$ FF $=\frac{2}{9}\left[n-\frac{1}{9}(1-10^{-n})\right]$ 35. The number of ways in which a term of 11 players can be selected from 22 players including 2 of them and excluding 4 of them is (A) ¹⁶C₁₁ $(C)^{16}C_{0}$ (D) ${}^{20}C_{8}$ $(B)^{16}C_5$ Ans. (C) Number of required ways Sol. $= {}^{24-4-2}C_{11-2} = {}^{16}C_{9}$ 36. The number of ways four boys can be seated around a round table in four chairs of different colours is (A) 24 (B) 12 (C) 23 (D) 64 Ans. (A) Sol. .: Required number of ways = 4! = 24

37.	If the coefficient of sec to	ond, third and fourth tern	ns in the expansion of (1	$(+ x)^n$ are in AP, then n is equal
	(A) 7	(B) 4	(C) 5	(D) 6
Ans.	(A)			
Sol.	Since, $T_2 = {}^nC_1$			
	And $T_3 = {}^{n}C_2 x$, $T_4 = {}^{n}C_3 x$	₃ x		
	Also, T_2 , T_3 , T_4 are in A	NP.		
	$\Rightarrow \frac{{}^{n}C_{1} + {}^{n}C_{3}}{2} = {}^{n}C_{2}$			
	${}^{n}C_{1} + {}^{n}C_{3} = 2. {}^{n}C_{2}$			
	$\Rightarrow \frac{n!}{(n-1)!(1)!} + \frac{n!}{(n-3)!}$	$\frac{2n!}{3!} = \frac{2n!}{2!(n-2)!}$		
	$\Rightarrow \frac{1}{(n-1)(n-2)} + \frac{1}{31} =$	$\frac{1}{(n-2)}$		
	$\Rightarrow 1 + \frac{(n-1)(n-2)}{6} =$	(n – 1)		A
	\Rightarrow 6 + n ² – 3n + 2 = 6n	-6		
	$\Rightarrow n^2 - 3n - 6n + 8 + 6$. = 0		
	\Rightarrow n ² – 9n + 14 = 0		60	
	\Rightarrow (n – 7) (n – 2) = 0			
	\Rightarrow n = 7 or 2			
	∴ n = 7	(∵ n ≠ 2)		
38.	$ f \Delta = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = k (a)$	– b) (b – c) (c – a), then	k is equal to	
	(A) –1	(B) 1	(C) 2	(D) abc
Ans.	(B)			
Sol.	$\Delta = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = \begin{vmatrix} 1 \\ 0 & b \\ 0 & c \end{vmatrix}$	a a^{2} - a $b^{2} - a^{2}$ (using $R_{2} - a^{2}$ - a $c^{2} - a^{2}$	\rightarrow R ₂ – R ₁ and R ₃ \rightarrow R ₃ –	R ₁)
	= (b – a) (c – a) $\begin{vmatrix} 1 & a \\ 0 & 1 \\ 0 & 1 \end{vmatrix}$	a ² b + a c + a		

$$= (b-a) (c-a) (c + a - b - a)
\Rightarrow (b-a) (c-a) (c-b)
= k (a-b) (b-c) (c-a) (given)$$
39. $\begin{vmatrix} a+b & a & b \\ a & a+c & c \\ b & c & b+c \end{vmatrix} is equal to
(A) 4abc (B) abc (C) a^{2}b^{2}c^{2} (D) 4a^{2}bc
Ans. (A)
Sol. $\begin{vmatrix} a+b & a & b \\ a & a+c & c \\ b & c & b+c \end{vmatrix} = \begin{vmatrix} b & -a & b-c \\ b & c & b+c \end{vmatrix} (by R_{1} \rightarrow R_{1} - R_{2})
= \begin{vmatrix} 2b & a & 2b \\ a & a+c & c \\ b & c & c-c \end{vmatrix} (by R_{1} \rightarrow R_{1} - R_{2})
= \begin{vmatrix} 2b & a & 2b \\ a & a+c & c \\ b & c & c-c \end{vmatrix} (by C_{3} \rightarrow C_{3} - C_{1})
= 2b(ac + c^{2} - c^{2} + ac)=4abc
40. If = \begin{vmatrix} x & a & b \\ a & b & x \end{vmatrix} and \Delta_{2} = \begin{vmatrix} x & b \\ a & b & x \end{vmatrix} are the given determinants, then
(A) $\Delta_{1} = 3(\Delta_{2})^{2} (D) (\Delta_{1}) = 3(\Delta_{2})^{2} (D) (\Delta_{1} = 3(\Delta_{2})^{\frac{3}{2}}$
Ans. (B)
Sol. Given, $\Delta = \begin{vmatrix} x & a & b \\ b & x & a \\ a & b & x \end{vmatrix} |\Delta_{2} = \begin{vmatrix} x & b \\ a & b & x \end{vmatrix} |\Delta_{2} = \begin{vmatrix} x & b \\ a & x \end{vmatrix}$$$

$$= \begin{vmatrix} x & a \\ b & x \end{vmatrix} + \begin{vmatrix} x & b \\ b & x \end{vmatrix} + \begin{vmatrix} x & a \\ b & x \end{vmatrix} + \begin{vmatrix} x & a \\ b & x \end{vmatrix} + \begin{vmatrix} x & a \\ b & x \end{vmatrix} + \begin{vmatrix} x & a \\ b & x \end{vmatrix} + \begin{vmatrix} x & a \\ b & x \end{vmatrix} + \begin{vmatrix} x & a \\ b & x \end{vmatrix} + \begin{vmatrix} x & a \\ b & x \end{vmatrix} + \begin{vmatrix} x & a \\ b & x \end{vmatrix} + \begin{vmatrix} x & a \\ b & x \end{vmatrix} + \begin{vmatrix} x & a \\ b & x \end{vmatrix} + \begin{vmatrix} x & a \\ b & x \end{vmatrix} + \begin{vmatrix} x & a \\ b & x \end{vmatrix} + \begin{vmatrix} x & a \\ b & x \end{vmatrix} + \begin{vmatrix} x & a \\ b & x \end{vmatrix} + \begin{vmatrix} x & b \\ b & x \end{vmatrix} + \begin{vmatrix}$$

 $-k(k + 2) = 0 \Rightarrow k = 0, -2$ \Rightarrow 43. The foot of the perpendicular from the point (3,4) on the line 3x - 4y + 5 = 0 is (B) $\left(\frac{92}{25}, \frac{81}{25}\right)$ (C) $\left(\frac{46}{26}, \frac{54}{24}\right)$ (D) $\left(-\frac{81}{25}, -\frac{92}{25}\right)$ (A) $\left(\frac{81}{25}, \frac{92}{25}\right)$ Ans. (A) Sol. Let M be the foot of perpendicular from (3,4) on the line 3x - 4y + 5 = 0. Then, M is the point of intersection 3x - 4y + 5 = 0 and line passing through P(3,4) and perpendicular to 3x - 4y + 5 = 0.....(i) Equation of the line perpendicular to 3x - 4y + 5 = 0 is $4x + 3y + \lambda = 0$ This passes through (3,4) $12 + 12 + \lambda$ \Rightarrow \Rightarrow $\lambda = -24$ JNDATH Equation is 4x + 3y - 24 = 0.....(ii) On solving equations (i) and (ii), we get y = 92/25x = 81/25Required point is $\left(-\frac{81}{25},-\frac{92}{25}\right)$. ÷. 44. A kite is flying at an inclination of 60° with the horizontal. If the length of the thread is 120 m, then the height of the kite is (C) $\frac{60}{\sqrt{3}}$ m (A) $60\sqrt{3}$ m (B) 60 m (D) 120 m Ans. (A) In D ABC, sin $60^\circ = \frac{h}{120}$ Sol. h \Rightarrow h =120× $\frac{\sqrt{3}}{2}$ \therefore h=60 $\sqrt{3}$ m 60° If the focus of parabola is at (0 - 3) and its curectrix is y = 3, then its equation is 45. (A) $x^2 = -12y$ (B) $x^2 = 12y$ (C) $y^2 = -12y$ (D) $y^2 = 12x$ Ans. (A) Let (x.y) be any point on the parabola. Then, by definition Sol. $\sqrt{(x-0)^2+(y+3)^2} = (y-3)$

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

 $\Rightarrow x^{2} + (y+3)^{2} = (y-3)^{2}$ $\Rightarrow x^{2} + y^{2} + 6y + 9 = y^{2} - 6y + 9$ $\Rightarrow x^{2} = -12y$

AFF

CHEMISTRY

Single correct answer type

- **1.** The ionic conductance of Ba²⁺ and Cl⁻ are respectively 127 and 76 Ω^{-1} cm² at infinite dilution. The equivalent conductance (in Ω^{-1} cm²) of BaCl₂ at infinite dilution will be
 - (A) 330 (B) 203 (C) 139.5 (D) 51
- Ans. (C)
- $\label{eq:sol} \textbf{Sol.} \qquad \Lambda_m^{\scriptscriptstyle \infty} \, \text{for} \, \textbf{BaCl}_2 \,{=}\, \Lambda_m^{\scriptscriptstyle \infty} \, \textbf{Ba}^{2{\scriptscriptstyle +}} \,{+}\, 2\Lambda_m^{\scriptscriptstyle \infty} \, \textbf{Cl}^{-}$

$$\therefore \Lambda_m^{\infty} \text{ for } \operatorname{BaCl}_2 = \frac{1}{2} \Lambda_m^{\infty} \operatorname{Ba}^{2+} + 2 \Lambda_m^{\infty} \operatorname{Cl}^{-}$$
$$= \frac{1}{2} \times 127 + 76$$
$$= 139.5 \Omega^{-1} \operatorname{cm}^2$$

- 2. If the elevation in boiling point of a solution of 10 g of solute (mol. wt. = 100) in 100 g of water is ΔT_{b} , the ebullioscopic constant of water is
 - (A) $\frac{\Delta T_{b}}{10}$ (B) ΔT_{b} (C) 10 ΔT_{b} (D) 100 ΔT_{b}
- Ans. (B)

Sol.
$$m = \frac{1000 \times K_b \times w}{w \times \Delta T_b}$$

Or
$$K_{b} = \frac{M \times W \times \Delta I_{b}}{1000 \times 10}$$

= ΔT_{b}

3. Given that;

 $H_2O(I) \rightarrow H^+$ (aq) + OH^- (aq); $\Delta H = 57.32 \text{kJ}$

$$H2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I); \Delta H = -286.02 \text{ kJ}$$

Then calculate the enthalpy of formation of OH^- at 25° C.

(A) –22.8kJ (B) –343.52kJ (C) +228.8 kJ (D) +343.52 kJ

- Ans. (A)
- Sol. Consider the formation of

$$H2(g) + \frac{1}{2}O_2(g) \rightarrow H_2I(I); \Delta H = -286.20 \text{ kJ}$$

 $\Delta Hr = \Delta H_{f} \left(H_{2}O(I) \right) - \Delta H_{f} \left(H_{2}(g) \right) - \frac{1}{2} \Delta H_{f} \left(O_{2}(g) \right)$ $-286.20 = \Delta H_{f}(H_{2}O(I)) - 0 - 0$ \therefore DH_f(H₂O(I) = -286.20 Now consider the ionization of H₂O $H_2O(I) \rightarrow H^{+}(aq) + OH^{-}(aq); \Delta H = 57.32 \text{ kJ}$ Calculate the amount of heat evolved when 500 cm³ of 0.1 M HCl is mixed with 200 cm² of 0.2 M NaOH. 4. (B) 2.865 kJ (C) 2.292 kJ (D) 0.573 kJ (A) 57.3 kJ (C) Ans. Sol. $HCI + NaOH \rightarrow NaCI + H_2O$ At t = 0, Number of moles $= \frac{500 \times 0.1}{200 \times 0.2}$ 1000 1000 0.05 0.04 ... During neutralisation of 1 mole of NaOH by 1 mole of HCl, heat evolved ... To neutralized 0.04, moles of NaOH by 0.04 mole of NaOH, heat evolved = 57.3 ×0.4 = 2.292 kJ 5. Which of the following will be the most effective in the coagulation of Fe(OH)₃ sol? (C) NaCl (A) $Mg_3(PO_4)_2$ (B) BaCl₂ (D) KCN Ans. (A) According to Hardy-Schulze rule, coagulation power of ions is directly proportional to charge onion. Sol. \therefore Fe(OH)₃ is positively charged colloid. ... It will be coagulated by anion. (B) BaCl₂ □ Ba²⁺ +2Cl⁻ (a) $Mg_3(PO_4)_2 \square 3Mg^2 + +2PO_4^{3-}$ (C) NaCl □ Na⁺ +Cl (D) KCN \square K⁺ +CN⁻ \therefore PO₄³⁻ has highest charge among the given anions.

- \therefore M_Y(PO₄)₂ is the most effective in coagulation of Fe(OH)₃ sol.
- 6. Identify 'C' in the following reaction;

9. In which of the following species only one type of hybridization is present?

	(A) $CH_3 - CH_2 - CH = CH_2$	(B) CH3 – CH = CH – CH_2
	(C) $CH_2 = CH - CH = CH_2^+$	(D) $CH_3 - CH = CH - CH_2^-$
Ans.	(C)	
Sol.	(a) $\frac{CH_3 - CH_2 - CH_2}{SP^3} = \frac{CH_2}{SP^2} = \frac{CH_2}{SP^2}$	(b) $\frac{CH_{3}}{SP^{3}} - \frac{CH}{SP^{2}} = \frac{CH}{SP^{2}} - \frac{CH_{2}^{+}}{SP^{2}}$
	(c) $CH_{SP^2} = CH - CH = CH_{SP^2}$ $SP^2 = SP^2 = SP^2$	(d) $\begin{array}{c} CH_{3} - CH = CH = CH_{2}^{-} \\ SP^{3} - SP^{2} & SP^{2} \\ SP^{2} & SP^{3} \end{array}$
10.	$2MnO_4^- + 5H_2 + 6H^6 \rightarrow 2Z + 5O_2 + 8H_2O$, identify	Z in the above reaction
	(A) Mn ²⁺ (B) Mn ⁴⁺	(C) Mn (D) MnO ₂
Ans.	(A)	
Sol.	$2MnO_4^- + 5H_2O_2 + 6H^+ \rightarrow 2Mn^{2+} + 5O_2 + 8H_2O$	
11.	In the titration of NaOH and HCI, which of the	following indicator will be used?
	(A) Methyl orange	(B) Methyl red
	(C) Both (methyl orange) and (methyl red)	(D) None of (methyl orange) and (methyl red)
Ans.	(C)	
Sol.	In the titration of strong base with strong acid, as indicator.	we can use methyl orange, methyl red, phenolphthalein
12.	Which of the following is correct IUPAC name	for $K_2[Cr(CN)_2O_2(O)_2NH_3]$?
	(A) Potassium amminecyanoperoxodioxochror	natic (IV)
	(B) Potassium amminecyanoperoxodioxochror	nium (V)
	(C) Potassium amminecyanoperoxodioxochror	nium (VI)
	(D) Potassium amminedicyanodioxoper oxoch	romate (VI)
Ans.	(D)	
Sol.	The IUPAC name of $K_2[Cr(CN)_2O_2(O)_2NH_3]$ is p	ootassium amminedicyanodioxoperoxochromate
	(VI).	
13.	Which of the following is process used for the	preparation of acetone?
	(A) Waber process	(B) Wacker process
	(C) Wolf-Kishner reduction	(D) Gattermann-Koch synthesis
Ans.	(B)	
Sol.	In Wacker process, when mixture of propane a	and air is passed through mixture of Pd and ${\rm CuCl}_2$ at high
	pressure, acetone is formed.	

$$\begin{split} \mathsf{Pd} + \mathsf{CuCL}_2 &\to \mathsf{PdCl}_2 + 2\mathsf{CuCl} \\ & 4\mathsf{CuCl} + \mathsf{HCl} + \mathsf{O}_2 \to 4\mathsf{CuCl}_2 + 2\mathsf{H}_2\mathsf{O} \\ & \mathsf{CH}_3\mathsf{CH} = \mathsf{CH}_2 + \mathsf{PdCl}_2 + \mathsf{H}_2\mathsf{O} + \to \mathsf{C} \to \mathsf{H}_3\mathsf{COCH}_3 + \mathsf{Pd} + 2\mathsf{HCl} \\ & \mathsf{propene} \end{split}$$

- **14.** Lindane can be obtained by the reaction of benzene with
 - $(A) CH_2CI / anhydrous AICI_3 \\ (B) C_2H_4I / anhydrous AICI_3$
 - (C) CH_3COCI / anhydrous $AICI_3$ (D) CI_2 in sunlight

Ans. (D)

Sol. Lindane is γ -benzene hexachloride. It can be prepared by benzene with Cl₂ in sunlight.

15. The structure of cis-bis (propenyl) ethane is

$$(A)_{H} (B)_{(C)_{H}} (D)_{(C)_{H}} (D)$$

ATT

Ans. (B)

Sol. The two propenyl groups attached to 1,2 position of carbon in cis-form.

$$CH = CH$$

 $CH_3 - CH = CH$
 $CH = CH - CH_3$

- 16.5 moles of $Ba(OH)_2$ are treated with excess of CO_2 . How much $BaCO_3$ will be formed?(A) 39.4 g(B) 197 g(C) 591 g(D) 985 g
- Ans. (D)
- **Sol.** $Ba(OH)_2 + CO_2 \rightarrow BaCO_3 + H_2O$
 - \therefore moles of Ba(OH)₃ = 5 moles of BaCO₃
 - \therefore Mass of BaCO₃ = moles of BaCO₃ × molecules mass of BaCO₃

= 5 × 197

=958 g

17. A diatomic molecule has a dipole moment of 1.2 D. If its distance is 1.0 Å, what fraction of an electronic charge, exist on each atom?

	(A) 25% of e	(B) 50% of e	(C) 60% of e	(D) 75% of e
Ans.	(A)			
Sol.	$\delta = \frac{\text{Dipole moment}}{\text{d}}$			
	$=\frac{1.2D}{1.0\times10^{-8}}$ cm			
	$=\frac{1.2\times10^{-8}esucm}{1.0\times10^{-8}cm}$			
	= 1.2 × 10 ⁻⁸ esu			
	The fraction of electron	ic charge, e is		
	$=\frac{1.2\times10^{-10}\text{esu}}{4.8\times10^{-8}\text{esu}}$			
	= 0.25e			
	=25% of e			
18.	A gas is heated through	n 1°C in a closed vessel	and so the pressure incr	eases by 0.4%. The initial
	temperature of the gas	swas		
	(A) –23°C	(B) +23°C	(C) 250°C	(D) 523°C
Ans.	(A)			
Sol.	Let $T_1 = T \Rightarrow T_2 = (T + T_2)$	1)		
	And $p_1 = p$ And $p_1 = p =$	$\Rightarrow p_2 = p + \frac{0.4p}{100} = \frac{100.4}{100}p$		
	Form $\frac{pV}{T} = \frac{p_2V_2}{T_2}$			
	$\frac{pV}{T} = \frac{100.4P}{100} \times \frac{V}{(T+1)}$	(1) X		
	100T+ 100 = 100.4T			
	0.4T = 100			
	$T = \frac{100}{0.4} = 250 \text{ K}$			
	= (250 – 273) °C			
	= -23°C			
19.	For 2NOBr(g) 2NO(g)) + Br ₂ (g) at equilibrium,	$P_{Br_2} = \frac{p}{q}$ and p is the tota	I pressure, the Ratio $\frac{Kp}{p}$ will be
	(A) $\frac{1}{3}$	(B) <u>1</u>	(C) $\frac{1}{27}$	(D) <u>1</u> 81

Ans.	(D)			
Sol.	2NOB(g) 🛛 2NO(g)			
20.	The decomposition ten	nperature is maximum fo	r	
	(A) MgCO ₃	(B) CaCO ₃	(C) Ba CO ₃	(D) SrCO ₃
Ans.	(C)			
Sol.	Barium salts are quite possess high decompo	e stable because of great sition temperature	at electropositive nature	of Ba. Hence, Ba compounds
21.	When some amount o hydroxide solution, the	f zinc is treated separate ratio of volumes of hydro	ely with excess of sulphu	ric acid and excess of sodium
	(A) 1 : 1	(B) 1 : 2	(C) 2 : 1	(D) 2 : 3
Ans.	(A)			
Sol.	$Zn + H_2SO \rightarrow ZnSO_4 +$	$-H_2^{\uparrow}$		
	$Zn + 2NaOH + \rightarrow Na_2Z$	$nO_2 + H_2 \uparrow$		
	Hence, ratio of volume	s of hydrogen evolved is	1:1.	
22.	A compound (A) when	treated with PCI_5 and t	hen ammonia gave (B).	(B) when treated with bromine
	and caustic potash pro	duced (C). (C) on treatme	ent with NaNO ₂ and HCI a	at 0°C and then boiling produce
	ortho-cresol. Compour	nd (A)		
	(A) o-chlorotoluene	(B) o-toluic acid	(C) m-toluic acid	(D) o-bromotoluene
Ans.	(B)			
	CH ₃ CH ₃		CH ₃ CH ₃ CH ₃ NH	= N – Cl L ³ ОН
Sol.				
		КОН	+HCl ₃	H20
				O – cresol
23.	Alizarin is an example	of		
	(A) triaryl dye	(B) azo dye	(C) vat dye	(D) anthraquinone dye
Ans.	(D)			
Sol.	Alizarin is an anthraqu	uinone dye. It gives a bi	ight red colour with alur	minium and a blue colour with
	barium.			

24. What will be the main product when acetylene with hypochlorous acid?

- (A) Trichloro acetaldehyde (B) Acetaldehyde
- (C) Dichloro acetaldehyde (D) Chloro acetaldehyde

Ans. (C)

Sol. $CH \equiv CH + HO^{-}CI^{+} \rightarrow CH = CH \xrightarrow{HO^{-}-CI^{+}} CH - CH \xrightarrow{-HO^{-}-CI^{+}} CH - CH \xrightarrow{-HO^{-}-CH^{$

(B) BaTiO₄

25. Barium titanate has the periovskite structure, i.e., a cubic lattice with Ba²⁺ ions at the corners of the unit cell, oxide ions at the face centres and titanium ions at the body centre. The molecular formula of barium titanate is

1FF

(C) BaTiO₂

(D) BaTiO

(A) BaTiO₃

Ans. (A)

Sol. Number of Ba²⁺ ions at the corner of unit cell

$$=8\times\frac{1}{8}=$$

Number of O²⁻ ions at the face centre

$$= 6 \times \frac{1}{2} = 3$$

Number of Ti⁴⁺ ions at the body centre = 1

... Molecular formula of barium titanate

= BaTiO₃

26. Which of the following hormone, is responsible for the growth of animals?

(A) Auxin	(B) Insulin	(C) Adrenaline	(D) Somatotropin
-----------	-------------	----------------	------------------

- Ans. (D)
- **Sol.** Somatotropin is the harmone, secreted by anterior lobe of pituitary gland. It is also called growth harmone as it stimulates protein synthesis, glycogenesis and some other biological activities. It deficiency causes midgets or dwarfism.

27.	Which of the following	have the largest ionic s	ize?	
	(A) F ⁻	(B) O ^{2–}	(C) Na⁺	(D) Mg ²⁺
Ans.	(B)			
Sol.	Number of electrons i	n F ⁻ = 9 +1 = 10		
	Number of electrons i	n O ²⁻ = 8 + 2 = 10		
	Number of electrons i	n Na+ = 11 – 1 =10		
	Number of electrons i	n Mg ²⁺ = 12 – 2 =10		
	Since, F⁻, O²⁻, Na⁺, N	ا are isoelectric and ا	he size of isoelectric	species decreases with increase in
	nuclear charge (i.e., r	number of protons), Hend	ce correct order of siz	ze is O ^{2−} > f [−] > Na ⁺ < Mg ²⁺
28.	If the radius of H is 0.	53 Å then what will be th	e radius of ₃ Li ²⁺ ?	
	(A) 0.17 Å	(B) 0.36 Å	(C) 0.53 Å	(D) 0.59 Å
Ans.	(A)			
Sol.	The radius of hydroge	n atom = 0.53 Å. ₃ Li ²⁺ ion	also has only one ele	ectron but it has 3 protons in nucleus,
	hence, its electron fee	ls three times more attra	ction from nucleus in	comparison of hydrogen atom. Thus,
	the radius of ₃ Li ⁻¹ will	be		
	$=\frac{0.53}{3}=0.17$ Å			, Or
29.	Which of the following	y will have highest value	of pK _a ?	C .
	(A) FCH ₂₂ CH ₂ COOH		(B) CH ₃ CH • F • C	соон
	(C) CH ₃ CH • Br • CO	н	(D) CH ₃ CH ₂ COOI	Н
Ans.	(D)			
Sol.	$pK_a \propto \frac{1}{K_a}$			
	Stronger the acid, hig	her the K _a values and lo	wer the pK _a value.	
	The order of acidity of	f given acids is as follow	S	
	CH ₃ < H • F • COOH =	> CH₃ • CH • Br • COOH	> FCH ₂ CH ₂ COOH >	CH ₃ CH ₂ COOH
	Since, CH ₃ CH ₂ COOH	l is the weakest acid am	ong the given, theref	ore its value will be highest.
30.	Gas(A)+NaOH → B-	$^{\Lambda}$ \rightarrow C $^{-\Lambda}$ \rightarrow D C and D	decolourises acidifie	ed KMnO ₄ . Identify C and D.
	(A) Na ₂ CO ₃ , NaOH			
	(B) (COOH) ₂ , (COON	a) ₂		
	(C) (COONa) ₂ , (COO	H) ₂		
Ans.	(C)			
Sol.	CO_{A} + NaOH \rightarrow HCOO	$DNa \xrightarrow[]{-H_2}]{} (COONa)_2 \xrightarrow[]{H^*} (COONa)_2 \xrightarrow[]{} (COON$	DOH) ₂	
		-		

31.	The polymer polyurethanes are formed by treating di-isocyanate with				
	(A) butadiene	(B) isoprene	(C) glycol	(D) acrylonitrile	
Ans.	(C)				
Sol.	O = C = N – R – N = C di-isocyanate	= O + HO $-R' - OH \rightarrow$ glycol	$\begin{bmatrix} O & O \\ II \\ -C & -NH - R - NH - C \\ polyure than es \end{bmatrix}$	- O – R' –O- n	
32.	What will be the volume	e of O_2 at NTP liberated b	y 5 A current flowing for 1	93 s through acidulated water?	
	(A) 56 mL	(B) 112 mL	(C) 158 mL	(D) 965 mL	
Ans.	(A)				
Sol.	$w = \frac{C \times t \times E}{F}$				
	$=\frac{5\times193\times8}{}$				
	96500				
	∴ At NTP, volume of				
	\therefore Volume of 0.08gO ₂	$=\frac{22400\times0.08}{32}$		ATIE	
	= 56 mL			O ^V	
33.	CO_2 goes to air, cause	s green house effect and	d gets dissolved in water	What will be the effect on soil	
	fertility and nH of the w				
•	(A) Increase	(B) Decrease	(C) Remain same	(D) None of these	
Ans.	(A) Increase(B)	(B) Decrease	(C) Remain same	(D) None of these	
Ans. Sol.	(A) Increase (B) $CO_2 + H_2O \Box H_2CO$	(B) Decrease $D_3 \rightarrow H^+ + HCO_3^-$	(C) Remain same	(D) None of these	
Ans. Sol.	(A) Increase (B) $CO_2 + H_2O \square H_2CO$ Here $[H^+]$ increases he	(B) Decrease $D_3 \rightarrow H^+ + HCO_3^-$ nce, pH decreases due t	(C) Remain same o which soil fertility will a	(D) None of these Iso decreases.	
Ans. Sol.	(A) Increase (B) $CO_2 + H_2O \square H_2CO$ Here $[H^*]$ increases he	(B) Decrease $D_3 \rightarrow H^+ + HCO_3^-$ nce, pH decreases due t	(C) Remain same o which soil fertility will a	(D) None of these Iso decreases.	
Ans. Sol. 34.	(A) Increase (B) $CO_2 + H_2O \square H_2CO$ Here $[H^+]$ increases he $2N_2O_5 \square 4NO_2 + O_2$	(B) Decrease $D_3 \rightarrow H^+ + HCO_3^-$ nce, pH decreases due t	(C) Remain same o which soil fertility will a	(D) None of these Iso decreases.	
Ans. Sol. 34.	(A) Increase (B) $CO_2 + H_2O \square H_2CO$ Here $[H^+]$ increases he $2N_2O_5 \square 4NO_2 + O_2$ If rate and rate constant calculate the concentra	(B) Decrease $D_3 \rightarrow H^+ + HCO_3^-$ nce, pH decreases due t at for above reaction are 2 ation of N-O-	(C) Remain same o which soil fertility will a 2.40 × 10^{-5} mol L ⁻¹ s ⁻¹ an	(D) None of these Iso decreases. Ind 3 × 10^{-5} s ⁻¹ respectively, then	
Ans. Sol. 34.	(A) Increase (B) $CO_2 + H_2O \square H_2CO$ Here $[H^+]$ increases he $2N_2O_5 \square 4NO_2 + O_2$ If rate and rate constant calculate the concentration (A) 1.4	(B) Decrease $D_3 \rightarrow H^+ + HCO_3^-$ nce, pH decreases due t at for above reaction are 2 ation of N ₂ O ₅ . (B) 1.2	(C) Remain same o which soil fertility will a 2.40 × 10^{-5} mol L ⁻¹ s ⁻¹ an (C) 0.04	(D) None of these lso decreases. d 3 × 10^{-5} s ⁻¹ respectively, then (D) 0.8	
Ans. Sol. 34.	(A) Increase (B) $CO_2 + H_2O \square H_2CO$ Here $[H^+]$ increases he $2N_2O_5 \square 4NO_2 + O_2$ If rate and rate constant calculate the concentration (A) 1.4 (D)	(B) Decrease $D_3 \rightarrow H^+ + HCO_3^-$ nce, pH decreases due t at for above reaction are 2 ation of N ₂ O ₅ . (B) 1.2	(C) Remain same o which soil fertility will a 2.40 × 10^{-5} mol L ⁻¹ s ⁻¹ an (C) 0.04	(D) None of these lso decreases. d 3×10^{-5} s ⁻¹ respectively, then (D) 0.8	
Ans. Sol. 34. Ans. Sol.	(A) Increase (B) $CO_2 + H_2O \square H_2CO$ Here $[H^+]$ increases he $2N_2O_5 \square 4NO_2 + O_2$ If rate and rate constant calculate the concentration (A) 1.4 (D) The reaction is of first of	(B) Decrease $D_3 \rightarrow H^+ + HCO_3^-$ nce, pH decreases due t at for above reaction are 2 ation of N ₂ O ₅ . (B) 1.2 order and for a first order	(C) Remain same o which soil fertility will a 2.40 × 10^{-5} mol L ⁻¹ s ⁻¹ an (C) 0.04 reaction,	(D) None of these lso decreases. and $3 \times 10^{-5} s^{-1}$ respectively, then (D) 0.8	
Ans. Sol. 34. Ans. Sol.	(A) Increase (B) $CO_2 + H_2O \square H_2CO$ Here $[H^+]$ increases he $2N_2O_5 \square 4NO_2 + O_2$ If rate and rate constant calculate the concentration (A) 1.4 (D) The reaction is of first of Rate, R = k $[N_2O_5]$	(B) Decrease $D_3 \rightarrow H^+ + HCO_3^-$ nce, pH decreases due t at for above reaction are 2 ation of N ₂ O ₅ . (B) 1.2 order and for a first order	(C) Remain same o which soil fertility will a 2.40 × 10^{-5} mol L ⁻¹ s ⁻¹ an (C) 0.04 reaction,	(D) None of these lso decreases. and $3 \times 10^{-5} s^{-1}$ respectively, then (D) 0.8	
Ans. Sol. 34. Ans. Sol.	(A) Increase (B) $CO_2 + H_2O \square H_2CO$ Here $[H^+]$ increases he $2N_2O_5 \square 4NO_2 + O_2$ If rate and rate constant calculate the concentration (A) 1.4 (D) The reaction is of first of Rate, R = k $[N_2O_5]$ $2.4 \times 10^{-5} = 3 \times 10^{-5} \times [0^{-5}]$	(B) Decrease $D_3 \rightarrow H^+ + HCO_3^-$ nce, pH decreases due t at for above reaction are 2 ation of N ₂ O ₅ . (B) 1.2 order and for a first order N ₂ O ₅]	(C) Remain same o which soil fertility will a 2.40 × 10^{-5} mol L ⁻¹ s ⁻¹ an (C) 0.04 reaction,	(D) None of these Iso decreases. Ad 3×10^{-5} s ⁻¹ respectively, then (D) 0.8	
Ans. Sol. 34. Ans. Sol.	(A) Increase (B) $CO_2 + H_2O \square H_2CO$ Here $[H^+]$ increases he $2N_2O_5 \square 4NO_2 + O_2$ If rate and rate constant calculate the concentration (A) 1.4 (D) The reaction is of first of Rate, R = k $[N_2O_5]$ $2.4 \times 10^{-5} = 3 \times 10^{-5} \times [10^{-5}]$	(B) Decrease $D_3 \rightarrow H^+ + HCO_3^-$ nce, pH decreases due t at for above reaction are 2 ation of N ₂ O ₅ . (B) 1.2 order and for a first order N ₂ O ₅]	(C) Remain same o which soil fertility will a 2.40 × 10 ⁻⁵ mol L ⁻¹ s ⁻¹ an (C) 0.04 reaction,	(D) None of these lso decreases. ad 3×10^{-5} s ⁻¹ respectively, then (D) 0.8	

35.	The molecule BF_3 and NF_3 both are covalent compounds, but BF_3 is non-polar and NF_3 is polar. The							
	reason is that							
	(A) boron is a metal and nitrogen is a gas in uncombined state.							
	(B) BF_3 bonds no dipole moment whereas NF_3 bond have dipole moment.							
	(C) atomic size of boron is smaller than that of nitrogen							
	(D) BF_3 is symmetrical molecule whereas NF_3 is unsymmetrical.							
Ans.	(D)							
Sol.	BF_3 is symmetrical planar, although it has polar bonds but resultant dipole moment is zero. In , NF_3 ,lone							
	pair cause distortion, hence polarity arises.							
36.	1.2 % NaCl solution is isotonic with 7.2% glucose solution. What will be the van't Hoff factor, i?							
	(A) 0.5	(B) 1	(C) 2	(D) 6				
Ans.	(C)							
Sol.	For NaCl pV=nST × i							
	$pi \times \frac{100}{1000} = \frac{1.2}{58.5} \times 0.0821 \times T \dots (i)$							
	For glucose, pV = nST							
	$p_2 \times \frac{100}{1000} = \frac{7.2}{180} \times 0.0821 \times T \dots$ (ii)							
	∴ NaCl and glucose solutions are isotonic							
	$\therefore p_1 = p_2$							
	On dividing Eq. (i) by (ii), we have							
	$i = \frac{7.2}{180} \times \frac{58.5}{1.2} = 1.95 = 2$							
37.	Green vitriol is							
	(A) ferrous sulphate	(B) tin oxide	(C) zinc oxide	(D) ferrous carbonate				
Ans.	(A)							
Sol.	FeSO ₄ • 7H ₂ O is known as green vitriol.							
38.	2-bromopentane with alcoholic KOH yields a mixture of three alkenes. Which of the following alkene is predominant?							
	(A) 1-pentene	(B) Cis-2-pentene	(C) Trans-2-pentene	(D) Cis-1-pentene				
Ans.	(C)	(C)						
Sol.	$\begin{array}{c} CH_3CH_2CH \ CH_3 \xrightarrow{C_2H_5OK} CH_3CH_2CH_2CH = CH_2 + CH_3CH_2 \ CH = CHCH_3 \\ I \\ Br \end{array}$							

By Sautzeff's rule, substituted alkenes are more stable. Hence, out of cis and trans forms, trans product is more stable.

MENIIT

39. In which of the following compounds, the bond length between hybridized carbon atom and other carbon atom is minimum? (A) Butane (B) Propyne (C) Propene (D) Butane Ans. (B) Sol. We know C - C bond length = 1.54 Å That C = C bond length = 1.34 Å $C \equiv C$ bond length = 1.20 Å Since, propyne has triple bond, therefore, it has minimum bond length. Which of the following IUPAC name of compound? 40. OHC соон C (A) 1, 4-dichloro-2, 6-dioxo-4-carbonyl-1-oic acid (B) 2,4-dioxo-1, 4-dichlorohexane-1-carboxylic acid (C) 1-,-dichloro-2, 4, 6-dioxocyclohexane-1-carboxylic acid (D) 1, 4-dichloro-4-formyl-2, 6-dioxy-cyclohexane-1-carboxylic acid Ans. (D) Hence IUPAC name is 1, 4-dichloro-4-formuyl 2, 6-dioxy -cyclohexane-1-carboxylic acid. Sol.

IT-JEE

ОНС 3 2/0 СООН 4 СІ 5 6 СІ

PHYSICS

Single correct answer type:

1. A straight wire of mass 200 g and length 1.5 m carries a current of 2A. It is suspended in mid-air by a uniform horizontal magnetic field B. The magnitude of B (in tesla) is (assume $g = 9.8 \text{ ms}^{-2}$) (A) 6

Ans. (D)

Sol. Magnetic force on straight wire

 $F = Bil \sin \theta = Bil \sin 90^{\circ} - Bil$

For equilibrium of wire in mid-air,

F = mg

Bil = mg

$$\therefore B = \frac{mg}{Bil} = \frac{200 \times 10 - 3 \times 9.8}{2 \times 1.5} = 0.65 T$$

2. In the circuit shown the value of in ampere is

(C) Ans.

So, net resistance,

 $R = 2.4 + 1.6 = 4.0 \Omega$

Therefore, current from the battery

$$i = \frac{V}{R} = \frac{4}{4} = 1A$$

Now, from the circuit (b)

$$4\ell' = 6\ell$$

$$\Rightarrow I' = \frac{3}{2}\ell$$

But $i = I + I' - I + \frac{3}{2}I = \frac{5}{2}I$
$$\therefore 1 = \frac{5}{2}I$$
$$\Rightarrow I = \frac{5}{2} - 0.4A$$

3. When light of wavelength 300 nm falls on a photoelectric emitter, photoelectrons are liberated. For another emitter, light of wavelength 600 nm is sufficient for liberating photoelectrons. The ratio of the work function of the two emitters is

(A) 1:2
(B) 2:1
(C) 4:1
(D) 1:4
Ans. (B)
Sol. Work function is given by

$$\phi = \frac{hc}{\lambda} \text{ or } \phi \propto \frac{1}{\lambda}$$

$$\therefore \frac{\phi_1}{\phi_2} = \frac{\lambda_2}{\lambda_1}$$

$$= \frac{600}{300} = \frac{2}{1}$$

4. A monatomic gas is suddenly compressed to $\left(\frac{1}{8}\right)$ th of its initial volume adiabatically. The ratio of its final pressure to the initial pressure is (Given, the ratio of the specific heats of the given gas to be 5/3) (A) 32 (B) 40/3 (C) 24/5 (D) 8

Sol. In an adiabatic process,

 $PV^{\gamma} = constant$

$$\Rightarrow \frac{p_1}{p_2} = \left(\frac{v_2}{v_1}\right)^{\gamma}$$
$$\Rightarrow \frac{p_1}{p_2} = \left(\frac{1}{8}\right)^{5/3}$$
$$\Rightarrow \frac{p_1}{p_2} = \left(\frac{1}{2^3}\right)^{5/3}$$
$$= \frac{1}{32}$$

$$\therefore \frac{P_2}{p_1} = 32$$

5. The intensity of the magnetic induction field at the centre of a single turn circular coil of radius 5 cm carrying current of 0.9 A is

(A) $36\pi \times 10^{-7}$ T (B) $9\pi \times 10^{-7}$ T (C) $36\pi \times 10^{-6}$ T (D) $9\pi \times 10^{-6}$ T

```
Ans. (A)
```

Sol. The intensity of magnetic induction field

$$B = \frac{\mu_0 I}{2r}$$
$$= \frac{4\pi \times 10^{-7} \times 0.9}{2 \times 5 \times 10^{-2}}$$
$$B = 36\pi \times 10^{-7} T$$

6. A capacitor of capacity of 0.1 μ F connected in series to a resistor of 10 m Ω is charged to a certain potential and then made to discharge through resistor. The time in which the potential will take to fall to half its original value is

(C) 0.5 s

FOUNT

(D) 1.0 s

(Given, log₁₀ 2 = 0.3010)

(A) 2s (B) 0.693 s

Sol. By equation of charging,

$$q = q_0 (1 - e^{-t/CR})$$

According to question,

$$\frac{q}{q_0} = \frac{1}{2} = 0.50$$

 $\therefore 0.50 = 1 - e^{-t/CR}$

 $e^{-t/CR} = 1 - 0.50 = 0.50$

or $\frac{1}{CR}\log_{e} 2$

or
$$\frac{t}{CR} = 2.3026 \log_{10} 2$$

or t = CR × 2.3026 $\log_{10} 2$

or t = CR × 2.3026
$$\log_{10} 2$$

or t = $0.1 \times 10^{-6} \times 10 \times 10^{6} \times 2.3026 \log_{10} 2$

7. If the force is given by $F = at + bt^2$ with t as time. The dimensions of a and b are (B) $[MLT^{-3}] [MLT^{-4}]$ (C) $[ML^2T^{-3}] [ML^2T^{-2}]$ (D) $[ML^2T^{-3}] [ML^3T^{-4}]$ $(A) [MLT^{-4}] [MLT^{-2}]$ (B) Ans. Sol. Dimension of at =Dimension of F [at] = [F] $\left[a\right] = \left[\frac{F}{t}\right]$ $\left[a\right] = \left[\frac{MLT^{-2}}{T}\right]$ $[a] = [MLT^{-3}]$ Dimension of bt^2 = Dimension of F [bt²] [F] $\left[b\right] = \left[\frac{F}{t^2}\right]$ $\left[b\right] = \left[\frac{MLT^{-2}}{T^2}\right]$ $[b] = [MLT^{-4}]$

 A ray of light is incident on the interface between water and glass at an angle I and refracted parallel to the water surface, then value of μg will be

9. A body is moved in straight line by constant power of machine. What will be the relation between the travelling distance and time?

(A) $s^2 \propto t^3$ (B) $s^2 \propto t$ (C) $s^3 \propto t^2$ (D) $s \propto t^3$

Ans. (A)

Sol. Power = $[Ml_2T^{-3}]$ = constant

$$\left\| \frac{ML^2}{T^2} \right\| = \text{constant}$$
$$\left\| L^2 \right\| \propto [T^3]$$

Or $S^2 \propto t^3$

10. Magnetic moment of bar magnet is M. The work done to turn the magnet by 90° of magnet in direction of magnetic field B will be

(C) 2MB

(D) MB

FOUNDATIK

(A) Zero

Ans. (D)

Sol. Work done,

W = MB
$$(1 - \cos \theta)$$

- ∴ W = MB
- **11.** Voltage V and current I in AC circuit are given by

(B) $\frac{1}{2}$ MB

V = 50 sin(50t) volt

i = 50 sin
$$\left(50t + \frac{\pi}{2} \right) m A$$

The power dissipated in circuit is

(A) 5.0 W (B) 2.5 W (C) 1.25 W (D) zero

Ans. (C)

Sol. Given, $V = 50 \sin(50t) V$

Maximum voltage, V₀ = 50 V

$$i = i_0 \sin\left(50t + \frac{\pi}{3}\right) mA$$

Maximum current, $i_0 = 50 \text{ mA} = 50 \times 10^{-3} \text{ A}$

Power dissipated,
$$p = \frac{i_0}{\sqrt{2}} \times \frac{v_0}{\sqrt{2}}$$

$$=\frac{50\times50\times10^{-3}}{2}$$
$$=\frac{2500\times10^{-3}}{2}=1.25\,\mathrm{W}$$

- **12.** A simple wave motion represents by $y = 5(\sin 4\pi t + \sqrt{3}\cos 4\pi t)$. Its amplitude is
 - (A) 5 (B) $5\sqrt{3}$ (C) $10\sqrt{3}$ (D) 10
- Ans. (D)
- **Sol.** $y = 5\left(\sin 4\pi t + \sqrt{3}\cos 4\pi t\right)$

 $y = 5\left(\sin 4\pi t + 5\sqrt{2}\cos 4\pi t\right)$ $A = \sqrt{A_1^2 + A_2^2}$ $A = \sqrt{\left(5\right)^2 + \left(5\sqrt{3}\right)^2}$

$$=\sqrt{25+75}=\sqrt{100}=10$$

13. A large open tank has two holes in the wall. One is a square hole of side L at a depth y from the top and the other is a circular hole of radius R at a depth 4y from the top. When the tank is completely filled with water, the quantities or water flowing out per second from the two holes are the same. Then, the value of R is

(A)
$$\frac{L}{\sqrt{2\pi}}$$
 (B) $2\pi L$ (C) $L\sqrt{\frac{2}{\pi}}$ (D) $\frac{L}{2\pi}$
Ans. (A)
Sol. By the principle of continuity
 $A_1v_1 = A_2v_2$
According to question, $A_1 = L^2$
 $v_1 = \sqrt{2gy}$
And $A_2 = \pi R^2$
 $v_2 = \sqrt{2g4y}$
 $\therefore L^3\sqrt{2gy} = \pi R^2\sqrt{2g4y}$
Or $L^2 = 2\pi R^2$
 $or R = \frac{L}{\sqrt{2\pi}}$

14. In the circuit shown below, the ammeter reading is zero. Then, the value of the resistance R is

- **16.** The maximum current that can be measured by a galvanometer of resistance 40 Ω is 10 mA. It is converted into a voltmeter that can read upto 50V. The resistance to be connected in series with the galvanometer (in ohms) is
 - (A) 2010 (B) 4050 (C) 5040 (D) 4960
- Ans. (D)
- **Sol.** To convert a galvanometer into voltmeter, the necessary value of resistance to be connected in series with the galvanometer is

$$R = \frac{V}{I_g} - G$$

$$=\frac{50}{10\times10^{-3}}-40$$
$$=5000-40=4960\ \Omega$$

17. For a given velocity, a projectile has the same range R for two angles of projection if t_1 and t_2 are the time of flight in the two case, then

(A)
$$t_1 t_2 \propto R$$
 (B) $t_1 t_2 \propto R^2$ (C) $t_2 t_2 \propto \frac{1}{R^2}$ (D) $t_1 t_2 \propto \frac{1}{R}$
Ans. (A)
Sol. $t_1 = \frac{2u \sin g \alpha}{g}$
 $t_2 = \frac{2u \sin (90^\circ - \alpha)}{g}$
So, $t_1 \times t_2 = 2 \frac{u^2}{g^2} \sin 2\alpha$
or, $t_1 \times t_2 = \frac{2R}{g}$ ($\therefore R = \frac{u^2 \sin 2\alpha}{g}$)
 $t_1 \times t_2 \propto R$

18. A sample of ideal monoatomic gas is taken round the cycle ABCA as shown in the figure. The work done during the cycle is

Ans. (A)

Sol. The work done = area of p-V graph = area of triangle ABC $= \frac{1}{2} \times 3p \times 2V = 3pV$

19. A sound source is moving towards stationary listener with $\frac{1}{20}$ th of the speed of sound. The ratio of apparent to real frequency is

(A) $\left(\frac{9}{10}\right)^2$ (B) $\frac{10}{9}$ (C) $\frac{11}{10}$ (D) $\left(\frac{11}{10}\right)^2$

Ans. (B)

Sol. Given, $n_s = \frac{n}{10}$

Apparent frequency $n' = n \left(\frac{v}{v - v_s} \right)$

Where, n = real frequency of source

v =velocity of sound

 v_s = velocity of source

So,
$$\frac{n'}{n} = \frac{v}{v\frac{v}{10}} = \frac{10}{9}$$

20. A satellite is in a circular orbit round the earth at an altitude R above the earth's surface, where R is the radius of the earth. If g is the acceleration due to gravity on the surface of the earth, the speed of the satellite is

OUNDATI

(A)
$$\sqrt{2Rg}$$
 (B) \sqrt{Rg} (C) $\sqrt{\frac{Rg}{2}}$ (D) $\sqrt{\frac{Rg}{4}}$

Ans. (C)

Sol. Orbital velocity (v_0) at a height h above the earth's surface is given by

$$v_0 = R_e \sqrt{\frac{g}{R_e + h}}$$

Given, $h = R_e$

$$\therefore v_0 = R \sqrt{\frac{g}{2F}}$$
$$= \sqrt{\frac{2g}{2}}$$

21. A 10 kg stone is suspended with a rope of breaking strength 30 kg.wt. The minimum time in which the stone can be raised through a height 10 m starting from rest is $(Taking g = 10 Nkg^{-1})$ $(C) = \sqrt{\frac{2}{3}s}$ (A) 0.5 s (B) 1.0 s (D) 2.0 s

M = 10 kg

INF

Мg

- Ans. (B)
- Sol. Tension in the string, T= mg

= 30 × 10

= 300 N T – Mg = Ma From the figure

300 - 10 × 10 = 10a

 \therefore a = 20 ms⁻²

Thus, the maximum acceleration with which the stone can be raised is 20 ms^{-2} . ATIC

Given, s = 10 m

And u = 0

$$\therefore 10 = \frac{1}{2}(20)t^2$$

$$\implies t = 1s$$

22. How much work must be done by a force on 50 kg body in order to accelerate it from rest to 20 m/s in 10s?

(A)
$$10^{3}$$
J (B) 10^{4} j (C) 2 × 10^{3} J (D) 5 × 10^{4} J
(B)
Now, s = ut + $\frac{1}{2}$ at²

Ans. (B)

Now, $s = ut + \frac{1}{2}at^2$ Sol.

> $s = 0 + \frac{1}{2} \times 10 \times 10$ S = 100 m

Hence, work done

 $W = F \times s$

W =ma × s

 $W = 10000 = 10^4 J$

A and B are two metals with threshold frequencies 1.8 × 10¹⁴ Hz and 2.2 × 10¹⁴ Hz. Two identical photons 23. of energy 0.825 eV are incident on them. Then photoelectrons are emitted by $(Taking h = 6.6 \times 10^{-34} J-s)$ (A) B alone (B) A alone (C) Neither A nor B (D) Both A and B Ans. (B) Sol. Threshold energy of A is $E_{A} = hv_{A}$ $= 6.6 \times 10^{-34} \times 1.8 \times 10^{14}$ = 11.88 × 10⁻²⁰J $=\frac{11.88\times10^{-20}}{1.6\times10^{-19}}eV$ =0.74 eV Similarly, E_B=0.91 eV Since, the incident photons have energy greater than E_A but less than E_B . So, photoelectrons will be emitted from metal A only. 24. The square of resultant of two equal forces is three times their product. Angle between the forces is (D) $\frac{\pi}{3}$ (B) $\frac{\pi}{2}$ **(A)** π Ans. (D) Let be the angle between vectors P and B Sol. , JEE Whose resultant is R. Hence, P = Q and $R^2 = 3PQ = 3P^2$ As $R^2 = P^2 + Q^2 + 2PQ \cos \theta$ \therefore 3P² + P² + P² + 2P² cos θ or $3P^2 - 2P^2 = 2P^2 \cos \theta$ or $P^2 = 2P^2 \cos \theta$ or $1 = 2 \cos \theta$ $\therefore \cos \theta = \frac{1}{2}$, thus. $\cos \theta = \cos 60^\circ$ or $\theta = 60^{\circ} = \frac{\pi}{3}$ 25. An object placed on a ground is in stable equilibrium. If the objects is given a slight push, then initially the position of centre of gravity

- (A) moves nearer to ground
- (C) Remains as such

- (B) rises higher above the ground
- (D) May remain at same level

MENIIT

Ans. (B) Sol. In stable equilibrium, the centre of gravity of object, lies at minimum height from ground. As the object is given a slight push, its centre of gravity rises because it comes in unstable equilibrium. 26. The maximum height attained by a projectile when thrown at an angle with the horizontal is found to be half the horizontal range. Then, θ is equal to (D) $\tan^{-1}\left(\frac{1}{2}\right)$ (B) $\frac{\pi}{6}$ (C) $\frac{\pi}{4}$ (A) $tan^{-1}(2)$ Ans. (A) Minimum height, $H_0 = \frac{u^2 \sin^2 \theta}{2q}$ Sol. Range, $R = \frac{u^2 \sin 2\theta}{g}$ Given, $H_0 = \frac{R}{2}$ NADATI $\therefore \frac{u^2 \sin^2 \theta}{2g} = \frac{u22 \sin \theta \cos \theta}{2g}$ $\Rightarrow \sin \theta = 2 \cos \theta$ \Rightarrow tan θ =2 $\therefore \theta = \tan^{-1}(2)$ 27. A shell of mass 20 kg at rest explodes into two fragments whose masses are in the ratio 2 : 3. The smaller fragment moves with a velocity of 6 ms⁻¹. The kinetic energy of the larger fragment is (B) 216 J (C) 144 J (A) 96 J (D) 360 J Ans. (A)

Sol. Total mass of the shell =20 kg

Ratio of the masses of the fragments = 2 : 3

... Masses of the fragments are 8 kg and 12 kg

Now, according to the conservation of momentum

$$m_1 v_1 = m_2 v_2$$

v (velocity of the larger fragment) =4 m/s

Kinetic energy
$$=\frac{1}{2}mv^2$$

$$=\frac{1}{2}\times12\times(4)^2=96J$$

28.	If the displacement of simple pendulum at any time is 0.02 m and acceleration is 2 m/s ² , then in this						
	angular velocity will be						
	(A) 100 rad/s	(B) 10 rad/s	(C) 1 rad/s	(D) 0.1 rad/s			
Ans.	(B)						
Sol.	Acceleration a =ω ² x						
	or $\omega = \sqrt{\frac{a}{x}}$						
	$=\sqrt{\frac{2}{0.002}}$						
	= 10 rad/s						
29.	Which is constant, the earth revolving around the sun?						
	(A) Angular momentum	1	(B) Linear momentum				
	(C) Rotational kinetic e	nergy	(D) Kinetic energy				
Ans.	(A)						
Sol.	ol. Kepler's second law						
	$\frac{dA}{dt} = \frac{L}{2m}$			OP			
	$\frac{dA}{dt} = constant$			2			
	L = constant						
30.	In non-elastic collision,						
	(A) momentum is conse	erved	(B) energy is conserved	b			
	(C) momentum and end	ergy are conserved	(D) momentum and ene	ergy are non-conserved			
Ans.	(D)						
Sol.	Momentum is conserved is non-elasticity collision but kinetic energy is not conserved.						

31. A mica slit of thickness t and refractive index μ is introduced in the ray from the first source S₁. By how much distance of fringes pattern will be displaced?

(A) $\frac{d}{D}(\mu - 1)t$ (B) $\frac{D}{d}(\mu - 1)t$ (C) $\frac{d}{(\mu - 1)D}$ (D) $\frac{D}{t}(\mu - 1)$

Sol. Fringe displacement
$$x_0 = \frac{D(\mu - 1)t}{d}$$

32.	The refractive index of water is 4/3 and that of glass is 4/3. What will be the critical angle for the ray of light entering water from the glass?						
	(A) $\sin^{-1}\left(\frac{4}{5}\right)$	(B) $\sin^{-1}\left(\frac{5}{4}\right)$	(C) $\sin^{-1}\left(\frac{1}{2}\right)$	(D) $\sin^{-1}\left(\frac{2}{1}\right)$			
Ans.	(A)						
Sol.	$\mu = \frac{\mu_1}{\mu_2} = \frac{5/3}{4/3} = \frac{5}{4}$						
	$\sin C = \frac{1}{\mu} = \frac{4}{5}$						
33.	The produced rays in	sonography are					
	(A) microwaves	(B) infrared wave	(C) sound waves	(D) ultra sound			
Ans.	(D)						
Sol.	The produced rays in a	sonography ultra sound.		4			
34.	The ratio of secondary	The ratio of secondary of primary turns of step up transformer is 4 : 1. If a current of 4A is applied to the					
	primary, the induced current in secondary will be						
	(A) 8 A	(B) 2 A	(C) 1 A	(D) 0.5 A			
Ans.	(C)						
Sol.	$\frac{I_s}{I_p} = \frac{N_p}{N_s} = \frac{1}{4}$		200				
	$I_s = \frac{1}{4} \times 4 = 1A$						
35.	The minimum force required to move a body up an inclined plane is three times the minimum force required to prevent it from sliding down the plane. If the coefficient of friction between the body and the						
	inclined plane is $\frac{1}{2\sqrt{3}}$, the angle of the inclined plane is						
	(A) 60°	(B) 45°	(C) 30°	(D) 15°			
Ans.	(C)						
Sol.	Minimum force required to move a body up a rough inclined plane						
	$F_1 = mg (\sin \theta + \mu \cos \theta)$	(H)					
	Minimum force required to prevent the body from sliding down the rough inclined plane.						
	$F_2 = \mu \operatorname{mg} \cos \theta$						
	According to question, $\Gamma_{\rm e} = 2\Gamma_{\rm e}$,					
	г ₁ – эг ₂						

mg (sin θ + μ cos θ) = 3 (μ cos θ) sin θ + μ cos θ = 3 μ cos θ sin θ = 2 μ cos θ = $2 \times \frac{1}{2\sqrt{3}} = \frac{1}{\sqrt{3}}$ = tan 30° θ = 30°

36. If k_s and k_p respectively are effective spring constant in series and parallel combination of springs as

resistance is doubled, then the power becomes

(A) 1/2 (B) 2 (C) 1/4 (D) 1 Ans. (A) Sol. Electric power $p = \frac{v^2}{R}$

Or
$$p \propto \frac{1}{R}$$

Or $\frac{P_2}{P_1} = \frac{R_1}{R_2} = \frac{R}{2_R}$
 $P_2 = \frac{P}{2}$

38.

A body moves with uniform acceleration then which of the following graph is correct?

Ans. (C)

- An object is said to be moving with a uniform acceleration, if its velocity change by equal amount in Sol. equal intervals of time. The velocity-time graph of uniformly accelerated motion is a straight line inclined to time axis. Acceleration of an object in a uniformly accelerated motion in one dimension is equal to the slope of the velocity-time graph with time axis.
- 39. The rate at which a black body emits radiation at a temperature T is proportional to

(A)
$$\frac{1}{T}$$
 (B) T (C) T³ (D) T⁴

- Ans. (D)
- From Stefan's law the rate of emission of energy per unit surface area of a black body is inversely Sol. proportional to the fourth power of absolute temperature (T) of the body.

 $E = \sigma T^4$ (σ = Stefan's constant)

- 40. Two equal charges q are kept fixed at a and +a along the x-axis. A particle of mass m and charge is brought to the origin and given a small displacement along the x-axis, then
 - (A) the particle executes oscillatory motion
 - (C) the particle executes SHM along x-axis
- (B) the particle remains stationary
- (D) the particle executes SHM along y-axis

- Ans. (C)
- Sol. From Coulomb's law

$$F = \frac{1}{4\pi a} = \frac{q_1 q_2}{r^2}$$

$$\mathsf{F} = \frac{1}{4\pi\epsilon_0} = \frac{q \times \frac{q}{2}}{\left(a + x\right)^2} - \frac{1}{4\pi\epsilon_0} \cdot \frac{q \times \frac{q}{2}}{\left(a - x\right)^2}$$

$$=\frac{1}{4\pi\varepsilon_{0}}\cdot\frac{q^{2}}{2}\left[-\frac{4ax}{\left(a^{2}-x^{2}\right)^{2}}\right]$$

When << a, then

$$F \propto = -\frac{2q^2}{4\pi\epsilon_0 a^3} x$$

 $\Rightarrow \mathsf{F} \propto -\mathsf{x}$

Hence, SHM along x-axis

AFE

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com